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SUMMARY

A parallel semi-explicit iterative ®nite element computational procedure for modelling unsteady incompressible
¯uid ¯ows is presented. During the procedure, element ¯ux vectors are calculated in parallel and then assembled
into global ¯ux vectors. Equilibrium iterations which introduce some `local implicitness' are performed at each
time step. The number of equilibrium iterations is governed by an implicitness parameter. The present technique
retains the advantages of purely explicit schemes, namely (i) the parallel speed-up is equal to the number of
parallel processors if the small communication overhead associated with purely explicit schemes is ignored and
(ii) the computation time as well as the core memory required is linearly proportional to the number of elements.
The incompressibility condition is imposed by using the arti®cial compressibility technique. A pressure-
averaging technique which allows the use of equal-order interpolations for both velocity and pressure, this
simplifying the formulation, is employed. Using a standard Galerkin approximation, three benchmark steady and
unsteady problems are solved to demonstrate the accuracy of the procedure. In all calculations the Reynolds
number is less than 500. At these Reynolds numbers it was found that the physical dissipation is suf®cient to
stabilize the convective term with no need for additional upwind-type dissipation. # 1998 John Wiley & Sons,
Ltd.

Int. J. Numer. Meth. Fluids, 26: 17±37 (1998)

KEY WORDS: incompressible Navier±Stokes; parallel ®nite element method; Galerkin approximation

1. INTRODUCTION

In this paper a semi-explicit ®nite element procedure for solving the time-dependent incompressible

laminar Navier±Stokes equations is presented. As with typical explicit schemes, the present

procedure can be easily implemented on a parallel computer architecture with a speed-up (over a

single processor) that is nearly equal to the number of processors. This feature is of importance in

¯uid ¯ow problems, where a large number of elements can make the computational time prohibitive

for the majority of single processor serial computers.

There are a variety of ®nite element solution methods in use today for the time dependent

incompressible Navier±Stokes equations. At two extremes among these are (i) direct methods to

solve the fully implicit non-linear systems leading from the `coupled' approach and (ii) explicit

methods leading from the `decoupled' approach. A discussion of these methods from the particular

perspective of parallel computing and incompressible ¯ows is provided in a recent review article by
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Fischer and Patera.1 Direct implicit methods involve solving the large number of ®nite element

equations using some form of Gauss elimination, among which banded matrix LU methods are

commonly used owing to their speed. The parallel ef®ciency of Gauss elimination algorithms is

generally low, however, because most of the steps in the algorithm depend strongly on previous steps.

Unlike in linear problems, the use of implicit methods for the non-linear Navier±Stokes equations

also require equilibrium or `inner' iterations. An advantage of these methods is the lack of a time step

restriction, even though in practice, to ensure time accuracy of the solution, the time step cannot be

arbitrarily large.

A purely explicit method, on the other hand, is limited by a severe time step restriction arising out

of stability considerations. The performance of explicit methods, however, can be improved if some

type of `local implicitness' is introduced with equilibrium iterations. Iterative semi-explicit methods2

are well suited for dynamic non-linear problems because they are local (in the sense that within a

small time step the effect of a nodal ¯ux decreases as the distance from the node increases) and the

critical time step is somewhat larger than for purely explicit methods. In addition, an explicit or an

iterative time-explicit method has an ideal computational cost per time step which is linearly

proportional to the number of ®nite elements, E. This is an important advantage over implicit

methods that need to perform Gauss elimination and hence have a computational cost proportional to

n� b� b, where n is the total number of degrees of freedom and b is the bandwidth. Here n is equal

to the total number of nodes (which is roughly equal to the number of elements, E, for a rectangular

four-node element) multiplied by D, the number of degrees of freedom per node (for two-dimensional

problems, D� 3, since there are two velocity degrees of freedom and one pressure degree of

freedom), and b is at least proportional to
p

n.

Another signi®cant advantage of explicit methods is that the core memory storage requirement is

signi®cantly less than for implicit methods. In the latter methods the core memory required is

proportional to n� b, while in explicit methods the core memory required is roughly of the order of

E �max�ne�2 � D2, where max�ne� is the maximum number of nodes of an element. For large

problems this can translate into huge core memory savings.

The new generation of MIMD (multiple-instruction±multiple-data)=GSM (global shared memory)

parallel machines are ideal for explicit methods, since the theoretical `parallel speed-up' is equal to

the number of parallel processors. In practice, however, the parallel speed-up degrades with the

number of processors owing to intensive memory access by the processors, which leads to congestion

on the memory bus and memory access bottlenecks. The semi-explicit iterative ®nite element

solution procedure presented in this paper achieved a speed-up of 14 on a 16-processor MIMD=GSM

SGI Power Challenge. In the procedure, at each iteration within a time step, the calculation of the

element ¯ux vectors, which is the most CPU-intensive step, is performed in parallel with a

computational time proportional to E=P, where P is the total number of processors. For an iteration

the element ¯ux vectors are mutually independent (non-commutative) and thus can be distributed on

a parallel computer system. The term mutual independence means that the output of one vector is not

used to evaluate another vector and that two processors do not perform a memory write operation to

the same location at the same time. If this occurs, then the result of that operation is unpredictable and

in general wrong. Fortunately, simple algorithmic `tricks' can prevent this form from occurring (see

e.g. References 3 and 4). A read operation to the same memory location at the same time is

permissible. The element ¯uxes are then assembled (summed) in parallel and used in the global ®nite

element equations to solve for the nodal values also in parallel.

The present procedure can also be used on an MIMD parallel computer cluster with distributed

memory.5 In this case, at the end of each iteration, a processor transfers the assembled ¯ux vectors

from its own memory to the memory of another processor as well as receiving the updated vector of

degrees of freedom needed for the next iteration. This obviously adds some communication overhead.
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The advantage of distributed memory MIMD clusters is that it is easier to add more processors and

hence increase the computational capacity.

After calculating and assembling the global ¯ux vectors, the global acceleration vector is evaluated

in parallel using a lumped mass matrix approach. Then, using the Newmark6 numerical integration

technique, the global acceleration vector is used to ®nd the nodal velocities, which in turn are used to

calculate better estimates of the element ¯ux vectors. This iterative procedure is repeated a prescribed

number of times. These iterations introduce some local implicitness which permits a moderate

increase in the effective critical time step size. In addition, an implicitness parameter is introduced to

reduce the change between iterations. The number of equilibrium iterations increases as the

implicitness parameter increases. However, as the number of equilibrium iterations increases, the

critical time step size also increases. Depending on the nature of the problem, an optimum

implicitness parameter value, time step size and number of iterations exist which minimize the

computing time while maintaining a high degree of time accuracy.

The performance of an algorithm is also tied to the choice of the governing equations and their

discretization. There are two particular dif®culties associated with the solution of the incompressible

Navier±Stokes equations. The ®rst dif®culty is that the Navier±Stokes equations are actually a set of

two partial differential equations, namely the momentum conservation equation and the mass

conservation equation, which must be satis®ed simultaneously. A related issue is that in the

incompressible limit there is no explicit equation for pressure. The second dif®culty arises from the

presence of the convective terms which is non-linear and non-symmetric.

The coupling between the momentum and continuity equations imposes the so-called Babuska±

Brezzi condition,7,8 namely that the degree of the polynomial interpolation function for pressure must

be at least one order less than that for velocity. For elements that satisfy this condition, the velocity

and pressure interpolation functions are either quadratic and linear respectively or linear and constant

respectively. Unfortunately, the use of lower-order pressure interpolation frequently introduces an

indesirable pressure-checkerboarding effect,9 even though the velocity ®eld remains acceptable at

least for steady ¯ows. In unsteady ¯ows, however, which are sensitive to pressure changes, the

pressure-checkerboarding effect might lead to inaccurate time evolution of the solution. To alleviate

this problem, pressure-smoothing techniques have been used, of which a least-squares-type

smoothing is the most common.9,10

It would be more advantageous to use equal-order interpolations for velocities and pressure, since

only one set of interpolation functions needs to be determined and the algorithm used to calculate the

®nite element ¯uxes is simpler. The techniques used to allow equal-order interpolations for velocities

and pressure involve the use of additional stabilizing diffusive terms in both the momentum and

continuity equations. Among these techniques are the Galerkin least squares (GLS) ®nite element

approximation11±16 and the Taylor±Galerkin formulation.17±19 In the GLS formulation the stabilizing

terms are obtained by minimizing the sum of the squared residuals of the momentum and continuity

equations integrated over a ®nite element. In the Taylor±Galerkin formulation, alternative time-

stepping methods based on a forward time Taylor series expansion are used, thus introducing

stabilizing diffusive terms, similar to those introduced in GLS, in the governing equations. The

complexity of these stabilizing terms, however, offsets the advantages of the simplicity introduced by

equal-order interpolation. In the present study the Babuska±Brezzi conditions is circumvented by a

pressure-`averaging' procedure at each equilibrium iteration. This permits the use of equal-order

interpolations for velocity and pressure with the standard Galerkin formulation.

A related complexity in dealing with the coupling between the momentum and continuity

equations is that in the incompressible limit there is no explicit equation for the pressure. To allow the

use of an explicit solution procedure that lends itself to parallelization, the arti®cial compressibility

technique20 is employed herein. In this technique a time derivative of pressure is introduced into the
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continuity equation. The coef®cient of this term is chosen to reduce the stiffness of the new system of

equations while ensuring that the ¯ow is nearly incompressible.

The second dif®culty in dealing with the Navier±Stokes equations is the presence of the convective

term. The standard Galerkin approximation in which the test functions are chosen to be the same as

the trial functions reduces to a central-difference-type approximation. This differencing, owing to the

non-symmetric nature of the convective operator, leads to spurious oscillations in a convection-

dominated problem. Upwind FEM techniques solve this problem by using a biased or upwind

difference approximation for the convective term.9,11,12,21±25 In the range of Reynolds numbers of

interest (limited to an upper value of 500) in this study, use of the standard Galerkin formulation was

found to be acceptable. Apparently the physical diffusion present in the problem is suf®cient to damp

the spurious oscillations.

This paper is divided into eight sections. The integral conservative form of the governing equations

along with our arti®cial compressibility hypothesis is presented in Section 2. Notation and

preliminary steps are introduced in Section 3. In Section 4 the ®nite element discretization of the

momentum equation is presented. In Section 5 the ®nite element discretization of the continuity

equation along with the pressure-averaging procedure is presented. The solution procedure is detailed

in Section 6. Examples which show the features of the present method are given in Section 7. Finally,

in Section 8, conclusions are offered.

2. GOVERNING EQUATIONS

The dynamic response of incompressible ¯uids is described by the equations of conservation of

momentum and mass. The former can be written in integral form as�
V

r
@ui

@t
dV �

�
V

@�ÿruiuj � sij�
@xj

dV �
�

V

rFi dV; �1�

where V is a ®xed control volume, t is the running time, r is the density of the ¯uid, ~u is the ¯uid

velocity vector, ~x is the position vector, ~s is the stress tensor and ~F is the vector of body forces. In

order to introduce the arti®cial compressibility approach, it is more natural to start with the

compressible form of the continuity equation:�
V

@r
@t

dV �
�

V

@�rui�
@xi

dV � 0: �2�

Notes

1. A conservative form of the governing equations is used.

2. The summation convention over repeated indices is used throughout the paper unless otherwise

speci®ed.

3. In all subsequent deviations all motions are assumed to be spatial. Therefore the range of the

indices i and j in (1) and (2) is from one to three.

Arti®cial Compressibility

In general for compressible ¯uids the absolute pressure P* is related to the density using an

equation of state of the form

r � f �P*; T�; �3�
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where T is the temperature. For a slightly compressible ¯uid the variations in P* are small even

though its absolute value is large, so it is more convenient to split P* as

P* � P� P1; �4�
where P1 is the ambient reference pressure and P is a small pressure change. In the absence of

temperature variations, if we assume the density to be linearly related to the pressure, we may write:

r � cP* � c�P� P1�; �5�
where the coef®cient c is a property of the ¯uid. In the arti®cial compressibility approach20 the

pressure change P in (5) is replaced by P=a for the evaluation of the time derivative of density in the

continuity equation (2), hence

r � c
P

a
� P1

� �
; �6�

where a is the arti®cial compressibility parameter. In all other terms the density can be assumed to be

constant, i.e. r � cP1, since pressure changes P are much smaller than P1.

In (1) the stress tensor can be written as

sij � ÿP*dij � tij; �7�
where tij is the deviatoric stress evaluated using an appropriate strain rate measure and constitutive

material model. For Newtonian ¯uids,

tij � lDkkdij � 2mDij; �8�
where l and m are viscosity coef®cients and ~D is the rate-of-deformation tensor given by

Dij �
1

2

@ui

@xj

� @uj

@xi

 !
: �9�

For incompressible ¯uids, @ui=@xi � 0, so we can write (9) as

tij � 2mDij: �10�
Substituting (4), (7) and (10) in (1) gives the momentum equation for incompressible ¯uids:

r
@ui

@t
� ÿr @�uiuj�

@xj

ÿ @P
@xi

� m
@2ui

@xj@xj

� rFi: �11�

Substituting (6) in (2) gives the arti®cial compressibility continuity equation:

@P

@t
� ÿaP1

@ui

@xi

: �12�

Theoretically for incompressible ¯ows the speed of propagation of a disturbance, s (speed of

sound), is in®nite. However, using our arti®cial compressibility momentum and continuity equations

(11) and (12), it can be easily shown that s is ®nite and given by

s � p�a=c�: �13�
In our semi-explicit iterative solution procedure the time step is inversely proportional to s. The key

advantage of the arti®cial compressibility approach is that s can be `arti®cially' reduced using the

arti®cial compressibility parameter a, thus allowing larger time steps. To ensure that the ¯ow solution

does not deviate signi®cantly from the incompressible ¯ow we are attempting to model, the reference
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Mach number Ma is not allowed to exceed 0�1, where Ma � U=s and U is a characteristic ¯ow

speed.

3. NOTATION AND PRELIMINARIES

We de®ne a global inertial Cartesian reference frame. Let xIj and uIj by the position co-ordinate and

¯uid velocity respectively in direction j of that frame at global node I. Uppercase indices will be used

to denote node numbers. The nodal pressures can be written as PI , where I is the global node number.

Next we de®ne a local-node-numbering scheme for each element. Let Ce
I be the global node number

of local node I of element e and ne be the total number of nodes of element e. Also let xe
Ij and ue

Ij be

the position co-ordinates and ¯uid velocity respectively in direction j of the inertial reference frame at

local node I of element e. Similarly, we de®ne the vectors of elemental nodal pressures Pe
I .

Accordingly, the relation between the local element inertial co-ordinates and the global inertial co-

ordinates can be written as xe
Ij � xCe

I
j.

For each ®nite element of volume Ve the unknown continuous variables of (1) and (2) are

expressed in terms of their nodal values using the matrix of interpolation functions:

ui � Ne
j ue

Ji; no summation over e and summation over j �j � 1! ne�; �14�
P � Ne

J Pe
J; �15�

where Ne
j is the interpolation function associated with local node number J of element e.

4. FINITE ELEMENT DISCRETIZATION FOR MOMENTUM EQUATION

Using the Galerkin ®nite element approximation, the in®nitesimal forces in (1) are distributed to the

®nite element nodes using the interpolation functions Ne
K :�

Ve

Ne
Kr
@ui

@t
dV �

�
Ve

Ne
K

@�ÿruiuj � sij�
@xj

dV �
�

Ve

Ne
krFi dV: �16�

Note that since the ¯uid is incompressible, the density is constant and uniform over the problem

domain. Integrating by parts and introducing Se, the surface of the ®nite element, and ni, the normal

to the surface, (16) can be written as

�Me�f_ueg � fFe
cg � fFe

mg � fFe
f g � fFe

r g � fFe
ag; �17�

where

Me
KJ �

�
Ve

rNe
KNe

J dV; �18�

Fe
cKi
�
�

Ve

@Ne
K

@xj

ruiuj dV; �19�

Fe
mKi
�
�

Ve

@Ne
K

@xj

sij dV; �20�

Fe
f Ki
� ÿ

�
Se

o

�Ne
Kruiuj � Ne

Ksij�nj dS; �21�

Fe
rKi
�
�

Se
i

�ÿNe
Kruiuj � Ne

Ksij�nj dS; �22�

Fe
aKi
�
�

Ve

Ne
KrFi dV : �23�
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Here �Me� is the element mass matrix, f_ueg is the vector of nodal accelerations, fFe
cg is the vector of

convective forces, fFe
mg is the vector of internal material forces, fFe

f g is the vector of free surface

forces, fFe
r g is the vector of inter-element reaction forces and fFe

ag is the vector of externally applied

forces. In (21), So is the outer surface of the element, and in (22), Si is the inner surface of the

element. The outer surface is the free surface of the domain and the inner surface is the surface with

which the element is interfaced with other surrounding elements. The inter-element reaction term

fFe
r g which is applied over Si cancels out between elements after assembly of the element equations.

Substituting (14) in (19), we can write

Fe
cKi
� Ce

KLMju
e
Liu

e
Mj; �24�

where

Ce
KLMj �

�
Ve

@Ne
K

@xj

rNe
LNe

M dV: �25�

Also, substituting (14), (15), (7) and (10) in (20) gives

Fe
mKi
� QKLiP

e
L � Ke

KLue
Li; �26�

where

Qe
KLi �

�
Ve

@Ne
K

@xi

Ne
LdV; �27�

Ke
KL �

�
Ve

m
@Ne

K

@xj

@Ne
L

@xj

dV : �28�

Thus for each element e we calculate a four-dimensional array Ce
KLMj, a three-dimensional array Qe

KLi

and a two-dimensional array Ke
KL. All these arrays are constant with time. The calculation of these

arrays takes the most computer time; however, since they are constant, they can be calculated only

once for each element and then during the simulation we multiply these arrays by the element nodal

values (see (24) and (26)) to ®nd the ¯uid forces. Similarly, substituting (14), (15), (7) and (10) in

(21) gives

Fe
f Ki
� ÿCe

KLMju
e
Liu

e
Mj �Qe

KLiP
e
L ÿKe

KLue
Li; �29�

where

Ce
KLMj � ÿ

�
Se

o

rNe
KNe

LNe
Mnj dS; �30�

Qe
KLj �

�
Se

o

Ne
KNe

Lni dS; �31�

Ke
KL � ÿ

�
Se

o

mNe
K

@Ne
L

@xj

nj dS: �32�

Similarly, Ce
KLMj, Qe

KLi and Ke
KL are all constant arrays which can be calculated once for each element.

5. FINITE ELEMENT DISCRETIZATION FOR CONTINUITY EQUATION

Using the Galerkin ®nite element method, the continuity equation (12) can be written as�
Ve

Ne
K

_PdV � ÿaP1

�
Ve

Ne
K

@ui

@xi

dV : �33�
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Integrating the RHS of (33) by parts, we can rewrite it in the form

�Ce�f _Peg � fLe
bg � fLe

f � � fLe
r g; �34�

where

�Ce� �
�

Ve

Ne
KNe

J dV; �35�

Le
bK
� aP1

�
Ve

@Ne
K

@xi

ui dV; �36�

Le
f K
� ÿaP1

�
Se

o

Ne
Kuini dS; �37�

Le
rK
� ÿaP1

�
Se

i

Ne
Kuini dS: �38�

Here �Ce� is the compressibility matrix, fLe
bg is the vector of mass ¯ux, fLe

f g is the vector of free

surface mass ¯ux and fLe
r g is the inter-element mass ¯ux vector which cancels out between elements

after assembly of the element equations. Substituting (14) in (36) gives

Le
bK
� Re

KLiu
e
Li; �39�

where

Re
KLi � aP1

�
Ve

@Ne
K

@xi

Ne
L dV: �40�

Similarly, substituting (14) in (37) gives

Le
f K
�Re

KLiu
e
Li; �41�

where

Re
KLi � ÿaP1

�
Se

o

Ne
KNe

LnidS: �42�

Re
KLi and Re

KLi are three-dimensional constant arrays which are evaluated once at the beginning of the

solution procedure.

Pressure-Averaging Technique

Substituting (8) in (7), we see that the pressure is added to the rate-of-deformation tensor ~D. If

equal-order interpolations are used for velocity and pressure, then the degree of the polynomial of ~D
is lower than that for the pressure. This leads to an unstable solution. This dif®culty is circumvented

here by the use of a pressure-`averaging' procedure that effectively removes the instability associated

with equal-order interpolations. In addition, pressure averaging propagates pressure information from

the exit, where the pressure boundary condition is set, to the interior of the domain. The pressure-

averaging technique consists of performing the following operation for all the nodes at each iteration:

PI � w0P1 �
Pnn�I�

K�1

wKPn�I;K�; �43�

Pnn�I�

K�0

wK � 1; �44�
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where PI is the pressure at node I; nn�I� is a one-dimensional array containing the total number of

nodes immediately adjacent to node I; n�I;K� is a two-dimensional array containing the Kth node

number of the node adjacent to node I and wK is the weight assigned to the Kth node. Note that

n�I; 0� � I. In addition, the same averaging procedure is performed on the assembled mass ¯ux vector

fLbg:

LbI
� w0LbI

� Pnn�I�

K�1

wKLbn�I;K� : �45�

For a two-dimensional mesh of rectangular four-node Lagrangian isoparametric elements the

pressure-averaging routine can be performed using the following two steps. The ®rst step is to ®nd the

average pressure for each element �Pe�:

Pe � 1

ne

Pne

I�1

PCe
i
: �46�

The second step is to ®nd the pressure at a node using

PI � �1ÿ b�PI � b
1

eI

PeI

k�1

PBI
k ; �47�

where eI is the number of elements which have node I as a common node, BI
k is the global element

number of element number k which is connected to global node I and b is a pressure-averaging

parameter. In (47), b � 0 corresponds to zero pressure averaging and b � 1 to full pressure

averaging. The two steps in (46) and (47) are performed on the mass ¯ux vector. The above procedure

is applied to boundary nodes as well, but now the elements eI which have node I as a common node

are fewer.

For a typical interior node, say node number I in Figure 1, the weights corresponding to full

pressure averaging were found to give the most stable and accurate solution while allowing the

largest time step:

w0 � 0�25; w1 � w2 � w3 � w4 � 0�125; w5 � w6 � w7 � w8 � 0�0625:

Note that the weights satisfy (44). Also, note that pressure averaging as small as

w0 � 0�9625; w1 � w2 � w3 � w4 � 0�00625; w5 � w6 � w7 � w8 � 0�003125

is enough to stabilize the solution, but the restriction on the time step size in that case is more severe.

Figure 1. Two-dimensional mesh composed of rectangular four-node Lagrangian elements
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6. PARALLEL NUMERICAL SOLUTION PROCEDURE

Assembly of Global Flux Vectors

Equations (16) and (33) are the conservation ®nite element equations for an element written for the

element nodes. In general a node is in common between many elements. The discretized governing

equations of the entire ¯uid domain consist of the conservation equations of all the nodes. These

equations are assembled from the element equations by adding the ¯ux contributions at a node from

all the surrounding elements. In (17) and (34) the nodal ¯ux vectors are fFe
cg, fFe

mg, fFe
f g, fLe

bg
andfLe

f g. These vectors are evaluated using (24), (26), (29), (39) and (41) respectively. At an iteration

within a time step these vectors are mutually independent and thus can be readily distributed on a

parallel computer. The assembled discretized ®nite element equations can be written as

f_ug � �M�ÿ1�fFcg � fFmg � fFf g � fFag�; �48�

f _Pg � �C�ÿ1�fLbg � fLf g�: �49�
The global mass matrix [M] and compressibility matrix [C] are assembled from the elemental mass

and compressibility matrices respectively. Since [M] and [C] do not change with time, they can be

evaluated and inverted once at the start of the solution procedure. In order to reduce the

computational burden as well as to preserve the full concurrency of the procedure, these matrices will

be lumped such that only the diagonal terms have non-zero values. In this case the inversion of these

matrices becomes trivial.

Newmark Time Integration

The simultaneous solution of (48) and (49) along with constraint equations gives the time history

of the velocity and pressure ®elds. The constraint equations are generally algebraic equations which

constrain the nodal values of some of the nodes. Equations (48) and (49) are ®rst-order ordinary

differential equations in time. We will use a semi-explicit iterative solution procedure based on

Newmark numerical integration.26 Using this procedure, (48) and (49) are ®rst rewritten in the form

f_ugit � �M�ÿ1�fFcgiÿ1
t � fFmgiÿ1

t � fFf giÿ1
i � fFagiÿ1

t �; �50�

f _Pgit � �C�ÿ1�fLbgiÿ1
t � fLf giÿ1

t �; �51�
where subscript t indicates the time and superscript i indicates the iteration number. These equations

are integrated numerically in time using the Newmark method:

fugit � �fugtÿDt � �1ÿ a�Dtf_ugtÿDt � aDtf_ugit��1ÿ p� � fugiÿ1
i p; �52�

fPgit � �fPgtÿDt � �1ÿ a�Dtf _PgtÿDt � aDtf _Pgit��1ÿ p� � fPgiÿ1
t p; �53�

where Dt is an appropriately chosen time step, a is the parameter of the Newmark integration and p is

an implicitness parameter. For an unconditionally stable numerical solution and no numerical

damping we choose a � 0�5, which corresponds to the classic Crank±Nicolson time stepping. Note

that the initial conditions at the previous time step, namely fugtÿDt, f_ugtÿDt, fPgtÿDt and f _PgtÿDt, are

known. Also, in (52) and (53) we will use the values at the previous time step as the initial guess in

our iterative procedure. Thus

fug0t � fugtÿDt; f_ug0t � f_ugtÿDt; fPg0t � fPgtÿDt; f _Pg0t � f _PgtÿDt: �54�
The implicitness parameter p introduced in (52) and (53) has a value between zero and one, with the

purpose of reducing the changes between iterations so as to increase the size of the critical time step.
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The trade-off is that more iterations will be required per time step. Let R be the minimum number of

iterations required per time step. As we increase the value of p, the number of iterations, R, increases

and the maximum allowable time step (critical time step) also increases. As a guideline to choosing R

and p, we suggest the relationship

pR < 0�017: �55�

To use the above relation, one ®rst selects a value for p and then ®nds the value of R that satis®es the

relation. For example, for p� 0�6 the value of R is R� 8. The meaning of (55) is very easily

demonstrated if we expand equation (52) or (53) at the Rth iteration:

fugRt � �fugtÿDt � �1ÿ a�Dtf_ugtÿDt � aDtf_ugRt ��1ÿ p�
� �fugtÿDt � �1ÿ a�Dtf_ugtÿDt � aDtf_ugRÿ1

t ��1ÿ p�p
� � � �
� �fugtÿDt � �1ÿ a�Dtf_ugtÿDt � aDtf_ug1t ��1ÿ p�pRÿ1

� fug0t pR: �56�

Therefore (55) guarantees that at the end of R iterations the weight of our initial guess (given in (54))

will be 1�7%.

Solution Algorithm

An outline of the semi-explicit iterative numerical solution procedure is given subsequently. The

following two steps are carried out once at the beginning of the solution procedure.

(a) [M] and [C] are evaluated and inverted. We have used lumped matrices [M] and [C]; thus these

matrices are diagonal. In that case the core memory storage required is very small compared

with the consistent matrices. Also, the inversion process is trivial.

(b) The arrays Ce
klmj, Qe

kli, Ke
kl, Ce

klmj, Qe
kli;Ke

kl, Re
kli and Re

kli are evaluated.

Then at each iteration the following steps are performed.

1. Element ¯ux vectors fFe
c g, fFe

mg, fFe
f g, fLe

bg and fLe
f g are evaluated in parallel on an element-by-

element basis using (24), (26), (29), (39) and (41) respectively (see Note 1 below).

2. Global ¯ux vectors are assembled in parallel on an element-by-element basis from the element

vectors.

3. Equations (50) and (51) are directly used to ®nd f_ug and f _Pg respectively in parallel on a node-

by-node basis.

4. Estimates of fug and fPg at time step t are calculated in parallel on a node-by-node basis using

(52) and (53) respectively.

5. The pressure-averaging procedure is executed in parallel on a node-by-node basis.

6. Constraint equations are executed in parallel (see Note 2 below).

7. Steps 1±6 are repeated using the new estimates of the nodal values. The above iterative process

can be terminated and control passed to step 8 if one of two stopping criteria are satis®ed. The

®rst criterion is met when the maximum difference between two consecutive nodal values is

less than a certain tolerance. The second criterion is met when a certain ®xed number of

iterations (which give a stable solution and at the same time satisfy (55) are completed. Even

though the second criterion is slower, it was found to be more robust and was adopted for the

present study.
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8. The initial nodal values are taken to be the new calculated values, time is incremented by Dt and

steps 1±7 are repeated.

Notes

1. In modelling problems involving deforming ¯uid domains, such as ¯uid±structure interaction

problems and free surface ¯ow problems, equations (19), (20), (21), (36) and (37) must be used

to evaluate fFe
c g, fFe

mg, fFe
f g, fLe

bg and fLe
f g respectively. This is due to the fact that in that case

the arrays Ce
klmj, Qe

kli, Ke
kli, Ce

klmj, Qe
kli, Ke

kli, Re
kli and Re

kli, which are functions of the element

geometry, are no longer constant.

2. Constraints can be set on the nodal velocities and=or pressures. Typical velocity and pressure

constraint equations have the forms uIj � f �t� and Pl � g�t� respectively, where t is time.

For a purely explicit scheme the critical time step is given by the CFL condition sDtc=Dx4 1. Note

that the CFL condition is based on the sound speed and not the convective speed of the ¯ow. This is

due to the fact that the characteristic speed of ¯ow using the arti®cial compressibility technique is the

sound speed. The improvement in the critical time step over a purely explicit scheme using the

present semi-explicit solution procedure is demonstrated in Figure 2. In order to compare the purely

explicit and semi-explicit time steps, an effective time step for the semi-explicit procedure is de®ned

as Dteffective � Dtcritical=R. The ratio of this effective time step to the time step for a purely explicit

method is plotted against the number of iterations, R, for the example problem of Section 7.3. Figure

2 shows that the maximum increase in the effective critical time step is achieved using the semi-

explicit solution procedure with R� 4 and p� 0�36. The CFL numbers found permissible in the

present study are about 10. We note here that if the CFL condition were de®ned based on the physical

characteristic speed, the permissible values would be of order unity.

In order to determine the parallel speed-up of the algorithm, the computation time was obtained for

one to 16 processors on a Silicon Graphics Power Challenge (which is an MIMD=GSM machine) for

the example problem of Section 7.3 with 2500 and 10,000 elements. The number of time steps and

the number of equilibrium iterations within a time step were kept ®xed for these tests. The speed-up

versus the number of processors is plotted in Figure 3 for 2500 and 10,000 elements along with the

theoretical parallel speed-up which is equal to the number of processors. For 10,000 elements the

Figure 2. Improvement in critical time step over purely explicit critical time step Dtexplicit by using sem-explicit solution
procedure. Dteffective � Dtcritical=R and for all simulations pR � 0�017
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speed-up is nearly linear and is almost 14 for a 16-processor calculation. Also note the degradation of

the speed-up for 2500 elements.27

7. EXAMPLES

The results for three benchmark ¯uid ¯ow problems are given subsequently. The three problems are

(i) steady state ¯uid ¯ow over a backward-facing step, (ii) unsteady ¯ow in an oscillating-lid-driven

closed cavity and (iii) vortex shedding over a circular cylinder. The actual calculations are carried out

in dimensional variables; however, they are reported using a Reynolds number de®ned as

Re � rUD=m, where D and U are the lengths and velocity scales respectively.

An implementation of the formulation presented in this paper was written in ANSI C. The results

in this section were computed on a six-processor SGI Onyx platform. Each processor was a 150 MHz

MIPS R4400 processor with a peak capacity of 75 M¯ops. All computational times reported in this

section are for this con®guration. The output of the programme consists of velocities, accelerations,

pressures and rates of change of pressure at the nodes as a function of time. The input consists of the

Cartesian nodal co-ordinates along with the elements connecting these nodes. Material properties of

the elements are also supplied. Velocity and pressure constraints, initial conditions as well as body

forces can also be speci®ed.

Only isoparametric rectangular four-node Lagrangian elements are used; thus both pressure and

velocity are interpolated using the conventional bilinear isoparametric interpolation.28,29 The present

formulation can accommodate most isoparametric element types. In a future paper we will investigate

the use of higher-order elements (see e.g. References 24 and 30±33). An important advantage of

using higher-order elements over linear elements is that generally fewer degrees of freedom are

required for the same accuracy.31

In all the examples the following parameters were used: (i) arti®cial speed of sound such that the

maximum arti®cial Mach number Ma was 0�1; (ii) number of equilibrium iterations was eight; (iii)

implicitness parameter value was 0�6; (iv) time step such that the CFL number was about 10.

Figure 3. Parallel speed-up versus number of processors for 2500 and 10,000 elements

PARALLEL FINITE ELEMENT COMPUTATION OF FLOWS 29

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 17±37 (1998)



Backward-Facing Step

The ¯ow in a planar channel with a backward-facing step is solved and compared with the

experimentally determined ¯ow of Armaly et al.34 The distribution of velocity at the entrance is taken

to be parabolic (fully developed channel ¯ow). A schematic diagram of the channel �l � 14h� and the

boundary conditions are shown in Figure 4 and the ®nite element mesh is shown in Figure 5. A

characteristic of this ¯ow is the recirculation region behind the step, after which the ¯ow reattaches to

the wall. A comparison of the computed and experimentally determined normalized distance xr=h of

the reattachment point from the edge of the step at steady state as a function of the Reynolds number

(Re� 50±300) is shown in Figure 6. The Reynolds number is based on h and the average entrance

velocity. The ®gure shows that the prediction from the present numerical technique matches closely

the experimental results. Figure 7 shows the steady state ¯ow streamlines for Re� 150.

Oscillating-Lid-driven Square Cavity

This example shows the accuracy of the present formulation in modelling dynamic ¯ow problems

in closed containers. The dynamic response of a viscous ¯uid inside a two-dimensional square

container with a sinusoidally oscillating top lid was computed with the mesh shown in Figure 8. A

no-slip condition is used at all the walls. The velocity of the top wall is given by u � sin�w0t�, where

w0 is the non-dimensional frequency of lid oscillation. Initially the ¯uid is motionless inside the entire

domain. The results presented here are for a Reynolds number of 400 based on the container width,

the peak lid velocity and w0 � 1�0. Figure 9 shows the history of the coef®cient of friction at the

upper wall, Cf , during the ®rst six lid oscillations. Here Cf is given by

Cf �
�1

0

�@u=@x�y�1dx:

At the sixth lid oscillation it is observed that Cf reaches a periodic steady state with an amplitude of

24. This ¯ow was also solved by Iwatsu et al.35 and the present result for Cf is in close agreement

with their computed value of 25. Figures 10 and 11 show respectively the pro®les of the horizontal

velocity (at x� 0�5) and vertical velocity (at y� 0�5) during the sixth lid oscillation. Figure 12 shows

snapshots of the streamlines also taken during the sixth lid oscillation. A total of 900 elements were

used in this example. The time step used was 2p=592 or 0�0106, corresponding to a CFL number of

10�6. The computation time per time step was about 0�15 s or 166 ms per time step node.

Figure 4. Schematic diagram of channel with backward-facing step
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Vortex Shedding over a Circular Cylinder

In the previous example the ¯ow was driven by a time-dependent motion of one of the boundaries.

In this example a time-dependent ¯ow ®eld is produced owing to instabilities in the ¯ow over a

circular cylinder, leading to vortex shedding. The Reynolds number is based on the cylinder diameter

(D� 0�0016 m), the upstream uniform velocity U, a density of 1 kg m73 and a viscosity of 0�001 Pa s.

The ®nite element mesh and the boundary conditions are shown in Figure 13. The vortex-shedding

frequency f for the ¯ow past a circular cylinder was measured experimentally by Rishko.36 A relation

between the Strouhal number and the Reynolds number for the ¯ow past a cylinder for Reynolds

number between 90 and 190 is given by S� 0�212(17 21�2=Re), where the Strouhal number is

de®ned as S � fD=U. Based on this relation, the variation of the shedding frequency with Reynolds

number is plotted in Figure 14. The ®gure shows very good agreement between the experimentally

measured vortex-shedding frequency and the one obtained using the present method. The results of

Figure 14 were obtained using an arti®cial Ma� 0�1 but were not altered when a lower value of

Ma� 0�05 is used. Figure 15 shows the periodic steady state history of the vertical component of

velocity at a point behind the cylinder for Re� 90 and 130. The oscillation period is equal to the

vortex-shedding period. Figure 16 shows snapshots of the stationary streamlines during the periodic

steady state for Re� 90 and 130. A total of 2500 elements were used in this example. The time step

Figure 5. Finite element mesh of backward-facing step

Figure 6. Variation of reattachment point with Re for backward-facing step. s, experimental data; n, present computation

Figure 7. Streamlines for backward-facing step at Re� 150
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Figure 8. Geometry, ®nite element mesh and boundary conditions of square container

Figure 9. History of friction coef®cient Cf

Figure 10. Pro®les of horizontal velocity along vertical centreline, x� 0�5, during one half-cycle of lid oscillation (Re� 400,
w0 � 1�0): (A) present method; (B) Reference 35. Curves a±d are at the times 0, T=8, T=4 and 3T=8 respectively, where

T � 2p=w0 is the period of oscillation
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was 0�0004 s, corresponding to a CFL number of 11�2. The inlet velocity was ramped up linearly

from zero at time 0 s to the nominal ¯ow speed at time 1 s. A small asymmetry in the ¯ow velocity

near the cylinder was introduced at time 0�5 s to promote vortex-shedding phenomena. A periodic

steady state was obtained at time 3 s. The shedding period for Re� 130 was 0�112 s. The computation

time was 0�4 s per time step or 160 ms per time step per node. Increasing the number of elements to

10,000 did not change the computation time per time step per node.

8. CONCLUSIONS

A ®nite element formulation for modelling unsteady incompressible laminar ¯uid ¯ows was

presented. Benchmark steady and unsteady ¯uid ¯ow problems were solved to demonstrate the

accuracy and features of the present method. The method is based on assembling global ®nite element

vectors rather than matrices. As expected of such a procedure, it was found that the amount of

computer core memory required was indeed proportional to the number of elements. A parallel

speed-up that is nearly linear with the number of processors was achieved. Computation times were

found to be nearly constant per time step per node regardless of the number of elements, verifying

that computation times are indeed linearly proportional to the number of elements.

A parallel semi-explicit solution procedure with equilibrium iterations at each time step is used.

The number of equilibrium iterations is related to an implicitness parameter. An increase in the

number of equilibrium iterations permits a larger critical time step. Depending on the nature of the

problem, an optimum time step and number of iterations exists which minimize the computing time.

A new pressure-averaging technique is used which allows the use of equal-order interpolations for

velocity and pressure. An arti®cial compressibility approach is employed allowing larger time steps

while ensuring that the time-dependent ¯ow is close to incompressible. Pressure averaging and

arti®cial compressibility allow the use of the semi-explicit solution procedure for solving the

incompressible Navier±Stokes equations and thus are an integral part of the procedure. For the

problems investigated, a choice of eight equilibrium iterations and an implicitness parameter of 0�6
permitted CFL numbers of about 10 to be used.

Figure 11. Pro®les of vertical velocity along horizontal mid-height, y� 0�5, during one half-cycle of lid oscillation (Re� 400,
w0 � 1�0): (A) present method; (B) Reference 35. Curves a±d are at the times 0, T=8, T=4 and 3T=8 respectively
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A standard Galerkin ®nite element approximation for all the terms in the Navier±Stokes equations

was found adequate for the Reynolds numbers computed here, which are less than 500. Apparently

the physical dissipation at these Reynolds numbers is suf®cient to stabilize the convective term. This

is unlikely to be the case at higher Reynolds numbers, where an upwind FEM formulation or explicit

addition of arti®cial viscosity may become necessary.
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Figure 13. Finite element mesh and boundary conditions for ¯ow past circular cylinder

Figure 15. Vertical velocity versus time at point A (x1 � ÿ0�025; x2 � 0�0� (of Figure 13)

Figure 14. Variation of vortex-shedding frequency with Reynolds number: - - -, from S� 0�212(17 21�2=Re) proposed by
Roshko;36 s, numerical simulation results
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